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Abstract - A finite element formulation is developed to determllle the order and angular variation
of singular stress states due to materi"l and geometnc discontinuities in anisotropic matenals. The
formulation applies to any two-dimensional geometry that is prismatic in the third direction and
has three-dimenSional displacement fields. In some special cases the thrce-dimensional fields become
uncoupled antiplane and inplane rields and this formulation yields the uncoupled results. The
formulation provides for the determindtion of the asymptotic stress and displacement fields present
at interior singular POlllts of three-dimensional structures. The displacement field of tbe sectorial
finite element is quadratic in the angular coordinate direction and asymptotic in the radial direction
measured from the singular point. The formulation of Yamada and Ok umura [( In3) Hrhrid lind
Mixed Finile Element Methods, pp. 32.'343. Wiley. Chichester] for inplane problems is adapted for
this purpose. The simplicity and accuracy of the formulation are demonstrated by comparison with
several analytical solutions for both isf'lropic and anisotropic multi-material wedges and junctions.
The nature and speed of convergence a'Sociated with the element suggests that it could be employed
in developing two-dimensional and three-dimensional enriched elements /,)f use along with standard
elements to yield accurate and computationally efficient solutions to problems having complex
global geometries leading to singular stress states

I:--JTRODlfCTION

For two-dimensional problems defined in the\.\' plane, i.e. with geometry and external
loading invariant in the direction normal to the \ \ plane as shown in Fig. I, Lekhnitskii

y

1-2-3: principal axis of J
orthotropy of the material.

1'-2'-3': axis used to define]
the material properties at a

Gauss point.

l'

x

Anisotropic material

Fig. I. Geometry of a typical structure in which a singular stress state occurs and reference axis
system for detCTllIining local mechanical properties.
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(1963), and Eshelby et al. (1953) have developed two equivalent complex-variable for­
mulations which have been used to solve numerous problems of anisotropic elasticity. At
about the same time, Stroh (1962) developed a third formulation equivalent to the first two,
but more versatile because it does not break down for certain specific cases of orthotropic or
isotropic materials. More detailed information concerning the three formulations and their
relations to one another can be found in a paper by Suo (1990), specifically in his Section
2 where the basic equations of Stroh's formulation are given and compared with others.

These formulations have been used to find the order of stress singularities and analytical
stress and displacement field expressions for prismatic two-dimensional geometries having
three-dimensional displacements where a singular stress state exists. Ting and Hoang (1984),
Zwiers et al. (1982) and Delale (1984) are among the authors of papers which treat these
geometries. The materials considered in these papers are anisotropic, i.e. the inplane and
antiplane displacement fields are coupled. even though the geometry is two-dimensional in
the x-y plane. For such geometries, Ting and Hoang (1984) have shown that pure exten­
sional loading in the .:-direction (see Fig. I) leads to at most a logarithmic singular stress
state. As a result, power singularities can be found from considering the same geometry in
a state of "generalized" plane strain to simplify the analysis. Here we define generalized
plane strain as did Delale (1984). i.e. a plane strain state plus shear strains in the direction
normal to the plane. Power singularities obtained under conditions of generalized plane
strain do not differ from those obtained in the general three-dimensional case as long as
the power singularities calculated lead to a singular stress state. In other words, if stresses
are found to be proportional to I" I, the conclusion of Ting and Hoang (1984) holds for
values of ;. such as 0 < Re(A) < I. The orders of the stress singularities have been obtained
previously for some simple geometries and material combinations. To the authors' knowl­
edge, geometries with more than two anisotropic materials have not been considered
previously using Stroh's formulation. Indeed, the analytical formulations developed for
such geometries are efficient but require rigor in their use. Also, obtaining the angular
variation of the displacement and stress fields as well as the orders of stress singularities for
geometries containing more than two materials would be quite a lengthy process.

Therefore, the present paper proposes a simple numerical approach to Stroh's (1962)
formulation in order to characterize the complete displacement and stress fields for prismatic
two-dimensional geometries with three-dimensional displacements. The inplane for­
mulation developed by Yamada and Okumura (1983) is adapted to allow for three-dimen­
sional deformation of two-dimensional wedges and junctions composed of anisotropic
materials. The current paper also follows naturally from the papers by Pageau et al.
(1995a,b) in which two-dimensional wedges and junctions composed of anisotropic
materials subject to antiplane shear or inplane loads, respectively, were considered. In
other words, these earlier papers considered only one-dimensional or two-dimensional
deformation of two-dimensional structures whereas the current paper considers three­
dimensional deformations.

The current formulation uses the conclusion of Ting and Hoang (1984) regarding
singularities due to .:-direction extension. Therefore. generalized plane strain is considered
here, although the numerical results that are obtained would have been identical if the
generalized plane strain constraint had not been imposed. Therefore. only power singu­
larities are of interest in this paper and logarithmic singularities resulting from extension
normal to the plane defined by the multi-material wedges and junctions are disregarded. A
recent paper by Pageau and Biggers (1995c) has investigated singular stress states at free
edges using a general three-dimensional approach. The formulation of that paper can also
be used for the geometries considered here. although it is far more computationally expens­
ive than the current approach. Since the general three-dimensional formulation does not
make use of the generalized plane strain assumption, it is used here as a check on all results
obtained using the current approach, and also as a validation of the conclusion of Ting
and Hoang (1984). The formulation is also verified by comparison with existing analytical
solutions by Ting and Hoang (1984) and Delale (1984). Finally. the method is extended to
typical multi-material junctions in which singular stress states are present due to material
and geometrical discontinuities. Results for both the order of the stress singularities and
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the angular \,ariatll)n or the displacement are presented. These examples demonstrate the
simplicity and aCClIrdC\ or the ll1l'lh)d.

FORMt 'LA rio,"

Figure I presents a ty plcal prismatic two-dimensional geometry where a singular stress
state occurs at points along the line 0 o. This formulation presents a finite element method
to determine the order of the stress singularity at a typical point along the line 0-0 away
from external boundanes. For this purpose. the geometry is divided into a number of
quadratic sectorial clements. with each element being located in polar coordinates by its
nodes I. .2 and 3 as ~hown in Fig. 2. A point P in the element can be located using the
singular transformatiun of '{ amada Cf ii/. 11979) by the relations

where

/ 1- I;

-r.(. ..:") or f!

II = '> H (I.

(1)

(2)

II ( lit I' II. = 1 '/" (3)

and 'I and: are natural cl10rdinates i)f the element whose ranges are defined as shown in
Fig. ...,

The displacement lield III the l'!clllent IS assumed to be of the form

(4)

where u" and u represent the three-dimensional displacement vectors of the vertex a and
the point P. respecti\ ely. and u, represents the three-dimensional displacement vector of the
ith node (i= 1.2.3).

In order to simpliry the notation and to measure displacements relative to that of the
vertex o. we define 0, = (u u..) and 0= (u - u,,). LJ sing eqn ( 1). eqn (4) can be written with
the new notation as

(5)

Since a state ill' gl'lllTali/ed plal1l strain is l'onsldered here for the reasons mentioned

~=lK
0=-1

o

~=-1

I-I!! ' lklllllllUII {lilhe IllIlt.: elemenl geumctn and natural coordmates.
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earlier. the displacements are not functions of the coordinate z and Ce = O. The remaining
strains are obtained directly from eqns (1 )-(3) and (5) as

I(~ I

fo

1""l
[8: I [B i ]{ U,} = [B]{u}, f- - - (6);)rO (U,} - ~;'

I = I

f'r~

iii: J

where

[B] = p I (i[B,,] + [B I ]).

0 0 0

-j{ 0 0 2 cHi
Hi e., CI}

0
() 0 0

2 cH,
[B,,,] = () Hi 0 [B,n] = e, 01}

-Hi 0

() 0 H,
0 0 0

() 0 0 2 oHi
0 0

8, 01}

i = 1,2,3. (7)

To obtain these result'i. it has been assumed that e2 = (8 1+ (3)/2, 8s = 83 - 8J, and therefore
r"1/r'O = ::: (J,.

Eq uations (6) and (7) show that the strains, and therefore the stresses, are proportional
to p' I. Thc case where 0 < Re(ic) < I defines a singular stress state at the vertex 0 of the
element. The element depicted in Fig. 2 must satisfy the principal of virtual work in order
to be in equilibrium, i.e in matrix notation,

1" i'"\ (J:8jT!jO";Jlrdrdf1 = 1'0 [II (J{Um V{T})ld8.
,-' II 0,,1/ 1 "'!/i

(8)

where: 0": represents the five stresses corresponding to {8}, {T} is the vector of the applied
loads T,. T" and T- at the outer boundary of the element, {uro } represents the displacement
vector on the surface I' = r,>, and I is the thickness of the element. Making use of eqns (1)­
(3), eqn un can be transformed into

(9)

On the surface I" = 1'., C = I and therefore we can write, using eqns (1) and (5),

(10)

By means of eqns (I) and (10). and knowing that Tr = 0"" Til = 'rli and Te = 're on the
surface I' = 1"", eqn (9) can be rewritten in matrix form as
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(I I)

In view ofeqns (6) and (7), using the constitutive relation: O"} = [DJ{s: and integrating
with respect to p, eqn (II) becomes

(.J rl

= ~iJ[ii]T I [HP[d](/.[BJ+ [BnJJdl,[ii;, (12)
• I

where [d) is composed of the first, third and fourth rows of matrix [DJ.
Since J{ii} is arbitrary, eqn (\2) leads to the following characteristic equation for the

entire domain S defined in Fig. 2 :

where

[A] = L ([ka ] - [k",JJ ' [8] = L ([kh] - [k,nJJ . [c] = L [k,J,
s s \

[k,a] = 2rI [HF[dJ(B..] dry

( 13)

(14)

( 15)

( 16)

(17)

(I Xl

( 19)

and where the summation over S implies assembly of the elements into the global model.
The matrix [C] being singular, the characteristic equation (13) can be transformed in only
one way into the standard eigenvalue problem:

{V} {~"' [0[S] _ =;. _ Ji., [S] =
U U -A Ie

(20)

Note that [I] is the identity matrix of order equal to the number of degrees of freedom
of the entire structure, and {V} = (W.) x {D}. Admissible values of I. are obtained from
eqn (20) and the elements of the eigenvector {D} are the normalized nodal values of the
displacement in the domain S for each value of J.. Angular variations of the displacements
and stresses can be obtained for each element by use of these eigenvectors, eqns (5)(7) and
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the constitutive relation {aJ = [O]{s}. If I. is complex, special considerations must be taken
in interpreting these angular variations as discussed by Pageau et al. (l995b). The 5 x 5
matrix [0] applies to anisotropic materials. The element stiffness matrices [k] are evaluated
using numerical integration by means of Gaussian quadrature. The matrix [0] must be
evaluated at each Gauss point during the numerical evaluation of the integrals, such that
the anisotropy in the material is correctly taken into consideration. Figure 1 shows the
principal axes of orthotropy of the anisotropic material as defined by the 1-2-3 axes, and
in which the matrix [0] can easily be written. A tensor transformation similar to that used
by Pageau and Biggers (1995c) can be used to determine the mechanical properties of this
material at the Gauss points in the orientation of the local cylindrical coordinate system
defined as the I'-2'Y axes. Note that for isotropic materials, the matrix [D] does not
depend on the location of the Gauss points, and therefore exact integration can be carried
out using three Gauss points. For anisotropic cases, exact integration is not possible and
therefore convergence with respect to the number of Gauss points must be evaluated as
well as convergence with respect to mesh refinement.

RESULTS

In the following section, the convergence of the values of I, predicted by the finite
clement code is examined. First. values of ;. are predicted for both isotropic and anisotropic
materials for the well-known case of a single material with a crack. Finite element results
are then compared with known solutions for isotropic and anisotropic multi-material
junctions with and wIthout disbonds. Finally, the finite element formulation is applied to
an anisotropic. prismatic. three-material junction with material properties that create three­
dimensional singular stress and displacement fields.

Call1'eri./ellcc a/the//Ilire elemenr code

!sarrop/i mater/iI!.l. As mentioned above. exact integration of the element stiffness
matrices is achieved with numerical integration using three Gauss points per element. The
questioll thell arises as to the number of elements needed to achieve sufficient accuracy in
the evaluations orthe mot I. obtained from eqn (20). The well-known single-material crack
pmblem shown in Fig. 3 is the first test case used to evaluate convergence. The exact value
of I for this problem is 0.5 for modes I. II and III. The values of A predicted by the finite

0.65,...----------------,

0.60

i. 0.55

y

x

0.50 l-----+-+---=:::::.il...--4---l__--4----4

30252015105

0.45 L-_~_ ___'___-'--_--'-__l--__J

o
Number of Elements

hg 1. Convergence of i. for a single isotropic material with a crack (modes I, II and III).
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element method arc ~hO\\ n in Fig..\lI1d Il1 Tabk I a~ a IUIK·tlOn 01 the number of equal­
sized elements composing the 2rr \,eege angle. These dala SIHl" a very ~trong. monotonic
convergence towards the exact solution with four-digit ac:curacy being achieved with 25
finite elements for mode~ I and II. and achieved wIIh only live clements for mode III. Note
that the result~ are exactly the same as those obtained for antiplane shear conditions and
inplane loads by Pageau ('! ill. (19()~a.b). This pro\L'~ Ihat this formulation works well for
isotropic cases. and thai the generailled plane ~Irain IllI'mubtion IS correct when the inplane
and antiplane deformations decouple as i~ the c:ase here

Aniso!ropic lilil!cri(//I. \Vith anisotropic n1atcnals. (;au~slan quadrature does not
exactly integrate the clement ~tilli}e~s matrices SIl1Cl' the local material properties are not
constant over the element. Thi~ inexactness adds 10 the regular problem of convergence
associated with clement sile disclls,ed in the pre\IOUS section Instead of using the single
material crack problem with a monoclinic matenal as a te~t case. here we consider an
anisotropic material as shown in Fig. 4 I'llI' which the Il1plane and antiplane deformations
are coupled. Indeed. using a nlOnoclInlc malenal "ould lead to the same uncoupled inplane
and antiplane results as those alre.lc'y obtained h\ Pageau ('! ill. (1995a.b). The exact
solution for i. is again 05 as indicated by Ting ~1I1c1 Hoang (1%4). The results from eqn
(20) are presented in F\g~ 5 7 and 111 Table 2. rill' 1ll1tdtion cases L II and III shown in
these three figures and table have been used a .. opposed to ll1ode~ L II and III since the
latter notation usually refer to decoupled inplane and out·of-plane crack opening. which is
not the case here due to the anisotro:1Y of the materIal. Here. results for which the eig­
envector most closely re~cmbled deformations associ<lll'd "ith uncoupled modes L II and
III are referred to as case~ I. II and III. respectively Integration with three. four and fivc
Gauss points per element \\a, lIsed for models \\lth various degrees of mesh refinement.
When only a very few elements <Ire useJ. accur<ll'\ is Ill1prmed I'llI' case I and decreased for

1,2 axe'S--a;e45° {rOnl the-y,~·•.•....'.lxe;·..1
after rotation about the x-axIs.

.._~~ ..,._-_._-_.._..., ...--.._---

E2'" E3 = 0.105xEI
V12 '" V13 = V23 '" 0.21
G12'" G23 '" G13 '" 0.0425xE}

7

x,3

SAS 33~ l~D
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Fig. 5. Convergence of i. for a single anisotropic material with a crack (case I).
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Fig. 6. Convergence of i. for a single anisotropic material with a crack (case II).
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Fig. 7. Convergence of i. for a single anisotropic material with a crack (case III).
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Tahle 2. Valuc, of I. from thc timte clement formulat,oll te\1 "n anlsc,rop'c matenal '\lth a crack (Figs 4 7i

Casc! Ca'c'll Casc III

Elements J Gauss 4 Gau" ~ (J~lll~S 3 Cia u:-;s -+ (,au,,:-- ~ (;dllS\ J Ciauss 4 Gauss 5 Gallss
in model pOints rOI 11 1.\ pO liltS p'llllh P~)lllh P(lIl1h IWlnts points points

0.55X072 IJ:i425!>X II '4500!> 1l,657H3K 1I!>.'X4hll 11659116 114X'i449 047369J 0.475947
S 050n99 OS079D II.S07X92 II SI924S 11.'21 7, I II '2111211 0497270 049SIXJ 049S27S
10 OS04604 0.S047114 IIS04761 II SOJO 1X IIS02'JX9 i I. S029X9 0.';00667 0.S00660 0.';00660
IS 0.499X4X 0499XSO II 499X';0 11500661 IISO(l6(,2 (1500662 0.500152 OSOO152 0500152
20 o49lJ70J 0499702 0.499702 II 500226 ()';0022 7 0'00227 O.5000S0 O.SOOOSO O.SOOOSO
25 OSOOO21 0.SOO021 0.500021 (I.SOOOXJ O'OOOXJ II'OOOXJ 0499998 0499998 0499998
.10 OSOOOIS OSOOOl6 II.SOOOI6 IISOOO3'J o '0001') 0'000.19 (1.5(10010 O.SOOOIO O.SOOO!O
J5 0500006 O.SOOOO6 0.)00006 1500022 11'00022 (I '00022 0499999 0499999 0.499999

case III as the number of Gauss pOlnh in increased Olhen\Ise, Ilhen a reasonable number
of elements is used in the model, the integration scheme docs not signiflcantly affect the
predicted values of ;,. Therefore, for ctlmputational eiliciency, the results to be presented in
the remainder of the paper were obtained using three integratipn points per element. The
major difference between the results for the isotropic and anisotropic materials is that in
the latter case convergence IS oscilla lOry, especially for ~'ase II LIn addition, convergence is
not as rapid as in the former case. Nevertheless, the results show rapid convergence towards
the exact solution with only 20 clements rcqutrl:d to gile resulh lhat are accurate to four
digits.

Validatio!l 01 t!Ie IlI/ite elclI/clit codc io, 1I/II!ri-marC/IiI! 11 cd,/c,

The tirst case studied, shown in hg, X. is a blmaterial wedge composed of two wedge
angles, one of angle 1, the other PI' angle ji. Both materials are composed of the same
fiber/resin composite whme material properties arc II1dieated In Fig. 8. The Ilber orientations
of the two materials, however. differ from each other and arc measured from the r-axis in
the .1'-,:: plane by the angles {!, and (!~ 1'1)1' matenals I and II. respectively. This problem has
been solved by Delale (1984) for specific \,t1ue~ of the angles (I, and (i" Using the same
values of the angles as Ddalc (19:"\4), eomparatl\ e rL'sults for the order of the stress
singularity can be obtalt1ed using Ddale's exaet formulation based on Lekhnitskii's (1963)
theory and the current approximate solution. Resulh arc shml;n in Tables 3--5. The last
column in these tables, and a subsequent table, e0111par~'s the current value of) with the
analytical value. The percentage error between the n umeneal and the analytical methods can
easily be evaluated as (Oio error) = ((CLrrent Anal~lIcal) I) x 100 AsshownbyPageaui'!

E2 =E3 = 0.0728xE 1

v12'" v13 '" 0.3
V23'" 0.5
G12 = G13 '" 0.0398xE 1

G23 '" O.0214xE j

z

A
\

7

211

II

21

In
y.

Material I: axis of orthotropy 11, 2r, and 31, at an angle 8] from the y axis
Material II: axis of orthotropy In, 2n, and 3]J, at an angle 82 from the y axis
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Table.~ V,liue, "flm\est I. for a bl-matenal wedgc with angles 'l = (I = 90. (I, = 30 (Fig. 8)

ren-elemc'nt nhlllel. Exact value. Current i.
\nglc II eqn 1111) Dclale (19X4) ,.\nalytiG1T:;:

911 (lY2~4 Formulation falis NAt
7~ 11')1711 0.9169 10001
hll 11.')419 09418 10001

4" II '!611 n.9611 10000
.in 11.9744 IJ9744 1.0000
I" 11.9768 0.9765 1.0003
n 11977~ Formulation fails N:A

15 11.989< O.lJX87 10006
formulation fails

30 I.OO1l8 ~xat..:t value = 1.0 1.0008

4" 11.98.'7 09833 1.0004
611 i!C)4

'
)4 0.9493 10001

7 :;; II 9~b~ 119167 10001
')11 ()l)1.Q I Drmulation fails :--I·A

t'\ A. IW! appLcable

Llble 4 Valuc" "I' 10wc'l I fur" bl-'ll"tenal Ilcdgc with anglcs 'l = 90, (I = 180. (I, = 30
l!Ig 8)

90

Fiftccn-elemenl nllJdel.
<'qn I~III

(I"~ I ~

II. "81"
11"(,(,9

11.5." I I
II "411
O.5JS5
o ".~') I
1I"4.~()

0552-:'
i!~64"

II ,"~1

II ",~ I "
II "8 1~

Exact valuc,
Dclale (1984)

Furmulation fails
rl.~816

0.5667
05510
0.5411
0.5386

Formulation falis
0.~441

Formulation fails
115645
05771
05813

I'ormulation fails

Current i.
Allalytical i.

1\ At
1.0001
10003
10001
09998
0.9998
NA

09996
NA

10000
1.0003
1.0003
NA

';''\i '\. 11111 allpbeablc

Table" Values of 10'lcst 1 fur" bl-matmal wcdge with angles (I = 180. (I, = 30. (I, = 60 (Fig. 8)

'\ngk J. EI:mcnh turren! FEM Exact value. Current ;.
Idegl in mudcl eqn 1111) Delale (1984) An:llytical;

------- -

III 19 (jq21 ~ Ol)n~ 10000
~II 10 11~"4; 0853~ 10009
.~II ()'97:--: 07950 10035
611 1\ il,(1(1)9 n6644 1.0023
'III '! 0.577- 05771 10010

1111 III 0,5250 0.5257 0.9987
I~IJ ] I 11.:'11)1 05111 o99X1
I~II 10 0 .."0] ILJ IJ5000 1.0024

11M. tinite clenlI'nt model

al. (1995a). it is important for convcrgence 10 use elements of equal size to model the
bimaterial wedge. As a consequence, all results are given as a function of the number of
equal-size elemcnts. FDr Tables 3 and 4, thc number of elements has been chosen such that
results arc ohtained within 0.1 (~o accuracy. For the results in Table 5. the number of
clements has been chosen to ohtain at least 0.5% accuracy. Note that due 10 the equal-size
clement constraint. the number ofeJemcnts used to obtain the results of Table 5 is a function
of the angle 1.. As a consequence, 19 clements had to he used for the case where 'l. = 10'
leading to rour-digI1 accuracy. The results show very good agreement with those obtained
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E2 = E3 = O. lOSxE l
v12 = v13 = vn =0.21
G12 =G23 =(;13 =0.042SxEI

't
~

z

2n

21

1]] Yo

Material I: axis of orthotropy 11,21, and 31- at an angle 81 from the y axis
Material II: axis of orthotropy III- 211- and 3n, at an angle 82 from the y axis

Fig.0 (Je(ll1letr~' and Illdlcn~d prupl'Jtlc,,; for a (rack Ihirmalll) and cndin!! at the interface bct\vecn
1-\~' ,111h~llrUrIC nLllL'TI~tl..,

by Delale (1984). L'll1g mOil' <:lcmellts in the mlldels leads to values closer to the exact
values for all cases. "llIe thaI only till' dominant \,due /. has ocen given here (i.e. the value
closest to zero) even thl)ugh ,ome \,1' the secondan \alues of i. also lead to singular stress
states.

The second te,t ca,e I' depicted III Fig. 9. It r<:pre,ents a crack which is normal to and
ends at the interface oct\\een two 'lIll'otropic material-.. Both materials arc composed of
the same lioer resin l'llmposlle whche material properties are indicated in the figure. The
tiber orientations of the two materiab. however. ditTer from each other and are measured
from the r-axis in the .~ plane by tIll' angles ill <ind iI., ,'or materials I and II, respectively.
This problem has been ,,11\ eel by Ting and Hoang ( 1984) for nul1lerous val ues of the angles
(II and 0:- Results arl' >!IVl'n In Taole 6 for seleet<:d v,t1ues of the angles 01 and °2 , They
compare well \\ith the result, oot<illled oy Tlng dnd Hoang (1984) and convergence to
within O.S"" accurac\ i, achie\ <:d WIth 'lnly 20 Clcnll'l1h 111 the model. Here again, increasing
the number of c1emelll" k'cld" III r<:"lIls which '1[11'1·,'a<..11 tho,c of Ting and Hoang (1984)

even closer.

Resulrsjin' rli/'cC-lllil!lI illl Ii C!Ii/C' <liil/ i'il/diul/.'

Figure 10 depict" IIll' ,:I,L' ,,! a cT,llk at thl' 'lI'l'l (:ll L' p!thrcl' materials. Each material
is the same hber re,1I1 lOmpO:iII<: \111(he local prup<:rlJe, are indicated in the figure. The
tiber orientations 01 [hl' three Il1JIlTI.t1". 11I1\\e\cr diller lrt'llll'ach dther and are measured
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E2 = E3 = O.105x.J::1
v12 =v13 =v23 =0.21
G12 =G23 =G13= O,0425xE1

z

y

III
y.

Material I: axis of orthotropy I], 2[, and 3[, at an angle 61 from the y axis
Material II: axis of orthotropy 11[, 2![, and 3[[, at an angle 62 from the y axis
:vtaterial Ill: axis of orthotropy 1II[, 2][[, and 3[[[, at an angle 63 from the y axis

Fig III. (ic<'mctn In 1matcrial pn1pCrliCS I'llI' <l crack normal to and ending at the interface between
tlncc anisotropic lllateriliis.

x

z

Fig I I Sl·hclllal,,· 01 thrl'C lll'lteruis II II h parllcular tiher orientations and a crack normal to and
l'nding at thc interrace.

from the r-axis in the r-.:: plane by the angles (II. 132 and 0, for materials 1, II and III,
respectively. This example is provided to show the ease with which the method can be used
for complicated material arrangements. For the specific case of 13 1 = - 13, and O2 = 0", for
which a schematic representation is shown in Fig. II. all the eigenvalues of eqn (20) that
lead to singular stress states arc shown in Table 7 and Fig. 12. These results are obtained
within approximatel~ O.5'~/() accuracy based on the observed convergence trends using a 20­
element model. As (/1 goes to 0 . the well-known modes I, II and III of a crack in a
homogeneous orthotrl'pic material are recovered and the three I. values converge to 0.5.
Note that the value i, is Llirly constant over the entire range studied, whereas AI and A3

vary significantly over the same range. The lowest value of i. l , corresponding to the strongest
singularity. occurs for OJ approximately equal to 53 . As 0 1 goes to 90 ,the three-dimensional
deformations of the structure decouple into one-dimensional and two-dimensional defor­
mations as the .\)' plane (sec Fig. I J ) becomes a plane of material symmetry. The eigenvalue
I., corresponds to antiplane shear deformation. whereas the other two eigenvalues cor­
respond to inplane deformation.

Figure 13 depich 1he case of a three-material junction having materials and geometry
as defined in the pre\ il'US example. C\cept that no crack is present in the current example,
The ei~el1\alucs Ih:11 1c;ld l(i sl"l'iil:I1' stress states in this case are shown in Table 7 and in
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Table 7. Values of all i. bctwecn 0 and I lor the cases depicted in Figs 12 and 13. for the special case 0, = 0",
(I, =-0,

With disbond betwcen materials 1 and III Without disbond between
(sec fig 12) materials I and III (see Fig. 13)

0, = -(I, 21 1:2

0 049i1675 0500000 0500426 0.999181 1.000007
10 04R33i10 0.5056'iR o 509267 0.979417 0.985042
20 0453712 0.507514 0536132 0942521 0.969417
30 0420610 0.508612 0.567943 0.913433 0.968623
40 03937i10 0.509514 0.600R54 0.908084 0.975970
45 03R4903 0.509910 0.614499 0.915760 0.980782
50 0379941 0.511)21)4 0.626341 0.929369 0.985588
60 0.384159 0510826 0644185 0.965095 0.993672
70 0411175 0" I II 7R 0654337 0.991563 0.998373
80 0461925 0.511326 0658101 0.999363 0.999852
90 0.500000 0.511338 0658587 0.999999 1.000681
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ijl0.40 1..[
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0.30
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Angle 81 =-83

Fig. 12. Values of all h which Icad til singular stress states lor the case of Fig. II with 8, = -8,
and (I, = 0
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Fig. 13. Values or all" \\ hlch ic<,,1 [I' sl'lgular stress stalcs for the case of Fig. II with Ii, = -Ii"
lild [1 hIll \\ ilb Iln di,;hlHHi
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i! II :tnd lIith no disbond.

Fig. 13. These resulh are also ohtained within approximately 0.5% accuracy using a 20­
element model. As II, goes to () or 9() . the value of the only two ;.s which lead to singular
stress states converge towards unity since the singular point disappears for these two cases.
The variation of I., and I., over the range studied is not as large as for the previous case.
The lowest value of i., occurs for (I, approximately equal to 37. Note also that the values
of i. for this lase are mUlh higher than in the previous case. which shows that the presence
of a crack leads to me,re singular stress states. However. even in the absence of a crack,
stress flelds wah signilicant singularitie, exist in the three-material junction. The three­
dimensional displacement field corresponding to ;., and the eigenvector 0 from eqn (20)
for the case of Fig. 1.1 with (), "~-II, ,= 45 and O2 = 0 is shown in Fig. 14. The three­
dimensional stress lil'lds for this prohlem could easily be obtained following the procedures
indicated in preview, papers (Pageau l'r "I .. 19Y5a.b) for two-dimensional fields.

f/alidaillill Ii! rhe qeller:di:ed !JlilIlC\rrilill iI.I.llIlI7jJrilil1

The approach used hy Pageau and Biggers (1995c) enables one to obtain the stress
and displacement fields at the location where singular stress states occur due to general three­
dimensional geometrilal discontll1ulties. In that paper. prismatic multi-material junctions
having a locus or singular points that intersects a rree surface. or free edge. were considered.
There. the linite c1emelt model encomrasses at most a half-spherical space. Results for the
examples considered in the lUITent investigation can be obtained from the general three­
dimension formulation at internal singular points if the finite element model encompasses
a full sphertcal spacc. When results are ohtained using the general three-dimensional
formulation. no as,un ption or gencrali/ed plane strain condition is made. However, for all
cases investigated here. the general three-dimensional formulation gives essentially the same
results as the current fllnnulatioll a, lung (IS the values of;' arc between 0 and I. For example,
the case sho'" n in Fig. 13 ",here Ii II; = 45 has two singular roots. i., = 0.913992 and
/2 = ()l)7~03(). accordlllg to the general three-dimensional formulation using a model with
128 elements Both roots are wlthll1 (1..'% or those obtained with the current formulation
and a simrlc 2tl-elcment mudel. For the corresponding disbonded case shown in Fig. 12
(i.e. II, = -- I!, = 4:' ). the general three-dimensional formulation with a I28-element model
leads to three singular rooh. i, = 0.381968. io = 0.510572 and ;'3 = 0.614608. These values
agree with those obtallled with a 2tl-elcment model and the current formulation to within
0.8°;;1. Furthermore. it appears that the results from the 20-element model using the current
formulation arc superior to tho,e or the larger general three-dimensional model based on
the ohserved convergence trends of the two methods. This comparison validates the con­
clusion of Ting and Hoang ( 1(84) regarding the effect of assuming generalized plane strain
condition-.. By assllming genera Ii/cd plane strain. the current formulation allows one to



Threl'-dimensional s1l1gular stress slates 47

simplify the finite element model and to reduce greatly the computational expense III

obtaining the asymptotic stress and displacement fIelds at internal points in structures
where the discontinuous geometr) is prismatic two-dimensional and the displacement fields
are three-dimensional.

COI\CL USIO"iS

A finite element formulation has been developed for determining the order of the
singularity and the angular variation of the displacement and stress fields around a singular
point in structures which are prismatic two-dimensional but with three-dimensional dis­
placement fields due to the presence of anisotropic materials. This formulation has the
merit of using a simplifying generalized plane strain assumption which has been shown to
have no influence on the results compared with a more complicated general three-dimen­
sional formulation. The sectorial element displacement shape functions are quadratic in
the angular direction and asymptotic in the radial direction. Numerical integration is
required only in the angular direction resulting in a very computationally efficient formu­
lation. The rapid convergence of the formulation has been demonstrated by comparison
with several available exact solutions. Low-order quadrature yields very accurate results
when a reasonable number of elements is used. Monotonic convergence is observed with
mesh refinement in isotropic materials and oscillatory convergence is observed with aniso­
tropic materials. Discrete changes in mechanical properties between adjacent elements cause
no difficulty in convergence. Predictions for the order of singularity in multi-material wedges
and junctions have been shown to be accurate with very simple models. The angular
variation of the singular displacement field corresponding to each root ;. is also obtained
through solution to the eigenvalue problem. Although all examples presented in this paper
had only real roots, the method predicts complex eigenvalues and eigenvectors with equal
ease. The accuracy and efficiency shown here suggest that results from this approach could
be used to formulate two-dimensional and three-dimensional enriched clements for use in
obtaining generalized stress intensity factors in complex geometrical confIgurations includ­
ing anisotropic materials.
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