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Abstract - A finite element formuiation is developed to determine the order and angular variation
of singular stress states due to materiul and geometric discontinuities in anisotropic materials. The
formulation applies to any two-dimensional geometry that is prismatic in the third direction and
has three-dimensional displacement fields. In some special cases the three-dimensional fields become
uncoupled antiplane and inplane fields and this formulation vields the uncoupled results. The
formulation provides for the determination of the asymptotic stress and displacement ficlds present
at interior singular points of three-dimensional structures. The displacement field of the sectorial
finite element is quadratic in the angular coordinate direction and asymptotic in the radial direction
measured from the singular point. The formulation of Yamada and Okumura [(1983) Hybrid and
Mixed Finite Element Methods, pp. 325-343. Wiley. Chichester] for inplane problems is adapted for
this purpose. The simplicity and accuracy of the formulation are demonstrated by comparison with
several analytical solutions for both isotropic and anisotropic multi-material wedges and junctions.
The nature and speed of convergence associated with the element suggests that it could be employed
in developing two-dimensional and three-dimensional enriched elements for use along with standard
clements to yield accurate and computationally efficient solutions to problems having complex
global geometries leading to singular stress states.

INTRODUCTION

For two-dimensional problems defined in the v--y plane. i.e. with geometry and external
loading invariant in the direction normal to the -1 plane as shown in Fig. 1. Lekhnitskii

1-2-3: principal axis of
orthotropy of the material.

1'-2'-3": axis used to define
the material properties at a
Gauss point.

Anisotropic material

Fig. 1. Geometry of a typical structure in which a singular stress statc occurs and reference axis
system for determining local mechanical properties.
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(1963), and Eshelby er al. (1953) have developed two cquivalent complex-variable for-
mulations which have been used to solve numerous problems of anisotropic elasticity. At
about the same time, Stroh (1962) developed a third formulation equivalent to the first two,
but more versatile because it does not break down for certain specific cases of orthotropic or
1sotropic materials. More detailed information concerning the three formulations and their
relations to one another can be found in a paper by Suo (1990), specifically in his Section
2 where the basic equations of Stroh's formulation are given and compared with others.

These formulations have been used to find the order of stress singularities and analytical
stress and displacement field expressions for prismatic two-dimensional geometries having
three-dimensional displacements where a singular stress state exists. Ting and Hoang (1984),
Zwiers et al. (1982) and Delale (1984) are among the authors of papers which treat these
geometries. The materials considered in these papers are anisotropic, i.e. the inplane and
antiplane displacement fields are coupled. even though the geometry is two-dimensional in
the x—y plane. For such geometries, Ting and Hoang (1984) have shown that pure exten-
sional loading in the --direction (see Fig. 1) leads to at most a logarithmic singular stress
state. As a result, power singularities can be found from considering the same geometry in
a state of “‘generalized™ plane strain to simplify the analysis. Here we define generalized
plane strain as did Delale (1984). i.e. a plane strain state plus shear strains in the direction
normal to the plane. Power singularities obtained under conditions of generalized plane
strain do not differ from those obtained in the general three-dimensional case as long as
the power singularities calculated lead to a singular stress state. In other words, if stresses
are found to be proportional to r~ ', the conclusion of Ting and Hoang (1984) holds for
values of 4 such as 0 < Re(4) < |. The orders of the stress singularities have been obtained
previously for some simple geometries and material combinations. To the authors’ knowl-
edge, geometries with more than two anisotropic materials have not been considered
previously using Stroh’s formulation. Indeed, the analytical formulations developed for
such geometries are efficient but require rigor in their use. Also, obtaining the angular
variation of the displacement and stress fields as well as the orders of stress singularities for
geometries containing more than two materials would be quite a lengthy process.

Therefore, the present paper proposes a simple numerical approach to Stroh’s (1962)
formulation in order to characterize the complete displacement and stress fields for prismatic
two-dimensional geometries with three-dimensional displacements. The inplane for-
mulation developed by Yamada and Okumura (1983) is adapted to allow for three-dimen-
sional deformation of two-dimensional wedges and junctions composed of anisotropic
materials. The current paper also follows naturally from the papers by Pageau et al.
(1995a.b) in which two-dimensional wedges and junctions composed of anisotropic
materials subject to antiplane shear or inplane loads, respectively, were considered. In
other words, these earlier papers considered only one-dimensional or two-dimensional
deformation of two-dimensional structures whereas the current paper considers three-
dimensional deformations.

The current formulation uses the conclusion of Ting and Hoang (1984) regarding
singularities due to z-direction extension. Therefore, generalized plane strain is considered
here, although the numerical results that are obtained would have been identical if the
generalized plane strain constraint had not been imposed. Therefore, only power singu-
larities are of interest in this paper and logarithmic singularities resulting from extension
normal to the plane defined by the multi-material wedges and junctions are disregarded. A
recent paper by Pageau and Biggers (1995¢) has investigated singular stress states at free
edges using a general three-dimensional approach. The formulation of that paper can also
be used for the geometries considered here, although it is far more computationally expens-
ive than the current approach. Since the general three-dimensional formulation does not
make use of the generalized plane strain assumption, it is used here as a check on all results
obtained using the current approach, and also as a validation of the conclusion of Ting
and Hoang (1984). The formulation is also verified by comparison with existing analytical
solutions by Ting and Hoang (1984) and Delale (1984). Finally, the method is extended to
typical multi-material junctions in which singular stress states are present due to material
and geometrical discontinuities. Results for both the order of the stress singularities and
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the angular variation of the dispiacement arc presented. These examples demonstrate the
simplicity and accuracy of the method.

FORMULATION

Figure 1 presents a typical prismatic two-dimensional geometry where a singular stress
state occurs at points along the line o o. This formulation presents a finite element method
to determine the order of the stress singularity at a typical point along the line 0o-o away
from external boundaries. For this purpose. the geometry is divided into a number of
quadratic sectorial clements. with cach element being located in polar coordinates by its
nodes 1. 2 and 3 as shown in Fig. 2. A point P in the element can be located using the
singular transformation of Yamada ¢7 a/. (1979) by the relations

[ ; A
i ) ( l ) [8)1 14 . = ( 2 /) (1)
0= 3% Ho. @)
where
Ho= e o Ho=10 07 Ho=n+n7) )

and # and { are natural coordinates of the element whose ranges are defined as shown in
Fig. 2.
The displacement lield in the element 1s assumed to be of the form

) = (’l ;\)[i H’(u,--—u“)]. (4)

\

where u, and u represent the three-dimensional displacement vectors of the vertex o and
the point P. respectively. and u, represents the three-dimensional displacement vector of the
ith node (i = 1. 2. 3).

In order to simplify the notation and to measure displacements relative to that of the
vertex o. we define @, = (u,—u,.) and i = (u—u,). Using eqn (1), eqn (4) can be written with
the new notation as

u= /)/[ Z H.a, } (5)

1

Since a state of generalized plance strain is considered here for the reasons mentioned

3(r,,03)

Fig. 2. Detnmton of the imte element geometry and natural coordinates.
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earlier. the displacements are not functions of the coordinate z and &. = 0. The remaining
strains are obtained directly from eqns (1)—(3) and (5) as

}U ﬁrt
3
fe) = <v0p = B} =B}, [} = {d. (6)
=1 -
7 w;
where
] .
(B] = R (~{BJ+[B/])
-0 0 0
Ho0 0] w2
0 0 0 0 on
B, )= 0 H 0 B,] = 2 oH, H 0
[ wal T i - ih] - 9‘ 577 i
0 11,‘ 0 0 0
Lo 0 0 .
L ) 2 0H,
0 0o =<
0, on J

i=1,2,3. (7

To obtain these results. it has been assumed that 0. = (8, 4+ 6,)/2, 0, = 0, —0,, and therefore
nicl =210

Equations (6) and (7) show that the strains, and therefore the stresses, are proportional
to p~ ' The case where 0 < Re(4) < | defines a singular stress state at the vertex o of the
element. The element depicted in Fig. 2 must satisfy the principal of virtual work in order
to be in equilibrium, i.e. in matrix notation,

SRR A LN 0,
. ’ (3! alyrdrdf = r, [ (8{8,,} "{T})edo, 8)

o« Wty v

where |o| represents the five stresses corresponding to {&}, {T} is the vector of the applied
loads 7,. 7, and T- at the outer boundary of the element, {i,.} represents the displacement
vector on the surface r = r,, and ¢ is the thickness of the element. Making use of eqns (1)-
(3). eqn (8) can be transtormed into

~ ) 1

Il

[

plr0, 0,
p '((){a}r{al)ng,pdidn:rOJ‘ S G T{T)rd. ©9)

1, »
On the surface r = r . = | and therefore we can write, using eqns (1) and (5),

u, = [Zl H,-ﬁ,:l = [H]{a}. (10)

By means of eqns (1) and (10). and knowing that T, = ¢,, Ty = 7,y and T. = 7,_ on the
surface r = r,. eqn (9) can be rewritten in matrix form as
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(g,
R 00
J j %(5{8}“{0’})1,0 dpdn = '_7; (){ﬁ}T[H]T<1 r,,,\{z!dn_ (1)
-1J0 2 ]
’ ‘~Tr:/

In view of eqns (6) and (7), using the constitutive relation {¢} = [D]{¢} and integrating
with respect to p, eqn (11) becomes

0, b _
;,fé{ﬁ}T J (A[B,]" +[B,]")[D)(A[B,] +[B,]) dn !a!
I
=6 | [H'[dI(A[BJ+[B,)dyla}. (12)

where [d] is composed of the first, third and fourth rows of matrix [D).
Since §{u} is arbitrary, eqn (12) leads to the following characteristic equation for the
entire domain S defined in Fig. 2:

(A [A]+A[B]+[CH{U! = 0. (13)
where
(Al = ;([ku]_[km])* (B] = ;([kb]—[k\h])- [C] = ;[k,]- (U} = ; wap o (14)
k] = J (B.]'[D][B,] dn (15)
(k] =J ([B,]"[D][B] + [B]' (DI(B.]) dy (16)
k] = j [B,]'[D][B,] dn (17)
ko)=2 JI [H]"[d}{B,] dn (18)
ko] = 2J [H]"[d][B,] dy (19)

and where the summation over .S implies assembly of the elements into the global model.
The matrix [C] being singular, the characteristic equation (13) can be transformed in only
one way into the standard eigenvalue problem :

[S]{V _{W o _ 0 I o)
U}”" o []~[—A 'C A ’B} .

Note that [I] is the identity matrix of order equal to the number of degrees of freedom
of the entire structure, and {V} = (1/2) x {U}. Admissible values of / are obtained from
eqn (20) and the elements of the eigenvector {U} are the normalized nodal values of the
displacement in the domain S for each value of 4. Angular variations of the displacements
and stresses can be obtained for each element by use of these eigenvectors, eqns (3) (7) and
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the constitutive relation {6} = [D]{e&}. If £ is complex, special considerations must be taken
in interpreting these angular variations as discussed by Pageau et al. (1995b). The 5x 5
matrix [D] applies to anisotropic materials. The element stiffness matrices [k] are evaluated
using numerical integration by means of Gaussian quadrature. The matrix [D] must be
cvaluated at each Gauss point during the numerical evaluation of the integrals, such that
the anisotropy in the material is correctly taken into consideration. Figure 1 shows the
principal axes of orthotropy of the anisotropic material as defined by the 1-2-3 axes, and
in which the matrix [D] can easily be written. A tensor transformation similar to that used
by Pageau and Biggers (1995¢) can be used to determine the mechanical properties of this
material at the Gauss points in the orientation of the local cylindrical coordinate system
defined as the 1-2-3" axes. Note that for isotropic materials, the matrix [D] does not
depend on the location of the Gauss points, and therefore exact integration can be carried
out using three Gauss points. For anisotropic cases, exact integration is not possible and
therefore convergence with respect to the number of Gauss points must be evaluated as
well as convergence with respect to mesh refinement.

RESULTS

In the following section, the convergence of the values of 4 predicted by the finite
clement code is examined. First. values of / are predicted for both isotropic and anisotropic
materials for the well-known case of a single material with a crack. Finite element results
are then compared with known solutions for isotropic and anisotropic multi-material
junctions with and without disbonds. Finally, the finite element formulation is applied to
an anisotropic, prismatic, three-material junction with material properties that create three-
dimensional singular stress and displacement fields.

Convergence of the finite element code

Isotropic materials.  As mentioned above, exact integration of the element stiffness
matrices is achieved with numerical integration using three Gauss points per element. The
question then arises as to the number of elements needed to achieve sufficient accuracy in
the evaluations of the root 2 obtained from eqn (20). The well-known single-material crack
problem shown in Fig. 3 is the first test case used to evaluate convergence. The exact value
of 2 for this problem is 0.5 for modes I, Il and I11. The values of A predicted by the finite

0.65

0.60

n 055

0.50 {

0.45 i . . .
0 5 10 15 20 25 30

Number of Elements

Fig. 3. Convergence of + for a single isotropic material with a crack (modes I, 11 and III).
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Table T Vilues of 2 from the finite clement formulation for an isotropic
material with a crack (Fig 3

tlements

im model Mode | Maode 11 Maode TH
3 A4 3ed] 0.630267 0 3003951%
s [ERRTDR A 0.3266349 (30003302
10 0.300654 0.501963 1. 30000336
I3 O S0034 0500401 0130000067
24 (.300043 0300129 03000002 ]
23 0300018 0.500033 (). 50000009
Y1 0.500009 (U SO0020 0 30000004

element method are shown in Fig. 3 and i Table | as a tunction of the number of equal-
sized elements composing the 2 weage angle. These data show a very strong. monotonic
convergence towards the exact solution with four-digit accuracy being achieved with 25
finite elements for modes I and 1. and achieved with only five elements for mode 111. Note
that the results are exactly the same as those obtained for antiplane shear conditions and
inplane loads by Pagcau ¢ «l. (19935a.by. This proves that this formufation works well for
isotropic cases. and that the generalized plane stram formulation is correct when the inplane
and antiplane deformations decouple as is the case here.

Anisotropic materials. With anisotropic materials. Gausstan quadrature does not
exactly integrate the clement stffness matrices since the local material properties are not
constant over the element. This inexactness adds to the regular problem of convergence
associated with element size discussed in the previous section. Instead of using the single
material crack problem with a monoclinic material as a test case, here we consider an
anisotropic material as shown in Fig. 4 for which the mplane and antiplane deformations
are coupled. Indeed. using a monochme material would lead to the same uncoupled inplane
and antiplane results as those alreacy obtained by Pageau ¢ al. (1995a.b). The exact
solution for 7 is again (.5 as indicated by Ting and Hoang (1984). The results from egn
(20) are presented in Figs 5 7 and i Table 2. The notation cases L. 1T and I11 shown in
these three figures and table have been used as opposed to modes 1. II and 11 since the
latter notation usually refer to decoupled inplanc and out-of-plane crack opening, which is
not the case here due to the anisotrony of the material, Here. results for which the eig-
envector most closely resembled deformations associated with uncoupled modes I, 1T and
[11 are referred to as cases 1. I and 1L respectively. Integration with three, four and five
Gauss points per element was used for models with various degrees of mesh refinement.
When only a very few clements are used. accuracy is improved for case and decreased for

1,2 axes are 45° from the y,z axes
after rotation about the x-axis.

E>=E3-0.105xE;
vi2=vi13=v23=0.21
G1y =Gz = Gy3=0.0425xE,

X, 3

Fig. 4. Geometry and material properties 1or a convergence ~study when the material is anisotropic.

SAS 33-1-0
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Fig. 5. Convergence of 4 for a single anisotropic material with a crack (case I).
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Fig. 6. Convergence of 4 for a single anisotropic material with a crack (case II).
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Fig. 7. Convergence of 4 for a single anisotropic material with a crack (case I1I).



Three-dirnensional singular stress states 41

Table 2. Values of 2 from the fintte clement formulation tor wn anisotropic material with a crack (Figs 4-7)

Case 1 Case I Case I
Elements 3 Gauss 4 Gauss 5 Guuss 3 Gauss 4 Gauss 3 Gauss 3 Gauss 4 Gauss S Gauss
in model  points pomnts points points points points points points points

3 0.358072 0.342568  0.543006 D.63783X 0.638400 0.659116 0.489449 0.473693 0.475947
5 0.507399 0.507927 0.507892 0819245 0521751 0321620 0.497270 0.495183 (.495275
10 0.504604 0.504764 0.504761 0503018 0.502959 0.5029%89 10.300667 0.500660 0.500660
15 0.499848 .499850 0499850 0.5300661  0.300662 0.300662 0.300152 0.500152 0.500152
20 0.499703  0.499702 0.499702 (1.300226 0.500227  0.500227 0.500050 0.500050 0.500050
25 0.500021 0.500021 0.500021 (1500083 0500083 0500083 0.499998  0.499998 0.499998
30 0.500015 0.500016 0.300016 (1.500039 0500039 0.500039 0500010 0.500010 0.500010
35 0.300006  0.500006 1.500006 500022 0500022 0.300022 0.499999  0.499999 0.499999

case I as the number of Gauss points in increased . Otherwise, when a reasonable number
of elements s used in the model. the integration scheme does not significantly affect the
predicted values of 2. Therefore, for computational cfliciency. the results to be presented in
the remainder of the paper were obtained using three integration points per element. The
major difference between the results for the isotropic and anisotropic materials ts that in
the latter case convergence 15 oscillatory, especially for case 1. In addition. convergence is
not as rapid as in the former case. Nevertheless. the results show rupid convergence towards
the exact solution with only 20 elements required to give results that are accurate to four
digits.

Validation of the finite element code for multi-material wedges

The first case studied. shown in Fig. 8. is a bimaterial wedge composed of two wedge
angles. one of angle x. the other of angle fi. Both materials are composed of the same
fiber/resin composite whose material properties are indicated in Fig. 8. The fiber orientations
of the two materials. however. differ from each other and are measured from the y-axis in
the y-=- plane by the angles ¢, and - for matertals 1 and I1. respectively. This problem has
been solved by Delale (1984) tor specific values of the angles ¢, and ¢,. Using the same
values of the angles as Delale (1984). comparative results for the order of the stress
singularity can be obtained using Delale’s exact formulation based on Lekhnitskii’s (1963)
theory and the current approximate solution. Results are shown in Tables 3--5. The last
column in these tables. and a subscquent table. compares the current value of 4 with the
analytical value. The percentage error between the numerical and the analytical methods can
easily be evaluated as (% error) = ((Current Analvtical) - 1) x 100. As shown by Pageau ez

E; = E3 = 0.0728%E,
vi2=vi3=03

va3=0.5 y,
G1r =G3 = 0.0398%E, 1

Gz = 0.0214xE;4 1

0
62
\\\ ,
x, 31 31
7 21
25

Material I: axis of orthotropy 1y, 2;, and 3, at an angle 0; from the y axis
Material II: axis of orthotropy 1y, 21, and 3y, at an angle 6, from the y axis

Fig. 8. Geometry and material propertics of a bi-maternal wedge.
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Table 3. Values of lowest 7 tor a bi-material wedge with angles » = f# =90 . 0, = 30 (Fig. 8)

Ten-element model. Exact value. Current /£
Angle 1. eqn (20) Delale (1984) Analytical 2
- 90 09234 Formulation fails N/AT
s 09270 0.9269 1.0001
al) 0.9419 0.9418 1.0001
-43 0.9612 0.9612 1.0000
30 .9744 0.9744 1.0000
[ (1.9768 0.9765 1.0003
0 09773 Formulation fails N/A
15 (19893 ).9887 1.0006
formulation fails
30 [.000K exact value = 1.0 1.0008
43 0.9R37 0.9833 1.0004
60 01,9494 0.9493 1.0001
75 (19268 0.9267 1.0001
() 0.9234 Formulation fails N'A

N AL not apphicable.

Table 4. Values of Towest # tor a bi-matenial wedge with angles 2 =90 , = 180 ., = 30
(Fig. 8)

Fifteen-clement model. Exact valuc. Current 2
Angic ¢ cyn (2 Delale (1984) Analytical 2
90 (1388 IFormulation fatls N AT
73 0.3817 0.5816 1.0002
60 11,5669 0.5667 1.0003
43 05511 0.5510 1.0002
30 05421 0.5422 0.9998
N ).3383 0.5386 0.9998
0 (.339] tormulation fails N A
15 0.3439 0.5441 0.9996
20 0.5527 Formulation fails N-A
43 (15645 0.5645 1.0000
ol (3772 0.5771 1.0003
=3 0 3X15 0.5813 1.0003
90 0 5818 Formulation fails N-A

TN AL o appheable.

Table 3. Values of forvest 2 for i bi-material wedge with angles f# = 180 . ¢, = 30 . (0, = 60 (Fig. 8)

Angle z El:ments Current FEM.¥ Exact value. Current /.
(deg) in model cqn (20) Delale (1984) Analytical £
o 19 B92]s 0.9215 1.0000
20 10 08343 ().8535 1.0009
30 7 07978 0.7950 1.0035
60 8 0.0639 0.6644 1.0023
90 Y 05777 0.5771 1.0010
120 10 0.3250 0.5287 0.9987
150 Il 053103 0.5112 0.9982
180 10 050119 0.5000 1.0024

T FEM. finite element model

al. (1995a). 1t 1s important for convergence to use elements of equal size to model the
bimaterial wedge. As a consequence. all results are given as a function of the number of
equal-size clements. For Tables 3 and 4. the number of elements has been chosen such that
results arc obtained within 0.1% uaccuracy. For the results in Table 5. the number of
elements has been chosen to obtain at least 0.5% accuracy. Note that due to the equal-size
element constraint. the number of elements used to obtain the results of Table 5 is a function
of the angle . As a consequence. |9 clements had to be used for the case where x = 10°
leading to four-digit accuracy. The results show very good agreement with those obtained
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E; = E3 = 0.105xEq
vi2=v13=v23 = 0.21

G2 =Gz = G13=0.0425xE; 1y

01
0

Material I: axis of orthotropy 1j, 2j, and 3}, at an angle 6; from the y axis
Material I1: axis of orthotropy 1y, 21, and 3y, at an angle 6; from the y axis

Fig. 9. Geometry and material properucs for a crack normal to and ending at the interface between
LA C SOropie nmlerials

by Delale (1984). Using more clements in the models leads to values closer to the exact
values for all cases. Note that only the dominant value ~ has been given here (i.e. the value
closest to zero) even though some of the secondary values of 2 also lead to singular stress
states.

The second test cuse is depicted in Fig. 9. 1t represents a crack which is normal to and
ends at the mterface between two anisotropic materials. Both materials are composed of
the same fiber resin composite whose material properties are indicated in the figure. The
fiber orientations of the two materials. however. differ irom each other and are measured
from the v-axis in the - plane by the angles 0, and 0. lor materials 1 and 11, respectively.
This problem has been solved by Ting and Houang (1984) for numerous values of the angles
f, and 0.. Results are given 1in Table 6 for selected values of the angles ¢, and 0,. They
compare well with the results obtamed by Ting and Hoang (1984) and convergence to
within 0.5% accuracy is achieved with only 20 ¢lements in the model. Here again, increasing
the number of clements Ieads to resulrs which approach those of Ting and Hoang (1984)
even closer.

Results for three-matcriai vedges aid Janctions

Figure 10 deprets the case of @ crack at the mtertace of three materials, Each material
is the same fiber resin composite whose local properues are indicated in the figure. The
fiber orientations of the three materialy. however ditfer f'rom cach other and arc measured

Table 6 Vadues of spular voots » 0 1203 (o theanterface erack shown in Fig. 9

Angle

ungle i Faents-element model. Exact value. Current /.
(deg) eqn 20 Iing and Hoang (1984)  Analytical 2
1360 042113 0442364 0.999433
- () 4uvsTg [ERSTE IR inin 1.000404
2 02268 [RRIH S 1.000000
45 45 | 034844 ] (b 348745 0.999272
2 0304304 (304113 1.000498
A 0047933 0642001 1.999925
). -3 FIRRIZN¢A] 1337490 0.998234
N [EINIARED] HS0516] 1.000768
: ORINKR 1 (632054 0.999738
9o, 0 500000 0, 500000 1.000000
N INERRER (051062 1.000736
3 () OSNSRT (1 (H3KKY? 0.999337
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Ep=E3-0.105xE; y
vi2=vi3=va3 =021
G2 = Go3=Gy3=0.0425xE,

%3133

Material I: axis of orthotropy 15, 2}, and 3|, at an angle 6; from the y axis
Material II: axis of orthotropy 1y3, 211, and 3y, at an angle 6 from the y axis
Material I1): axis of orthotropy 1my, 21y, and 3y, at an angle 03 from the y axis
Frg. 10, Geometry an § material properties for a crack normal to and ending at the interface between
three anisotropic materials.

\63

01

Fig: 11 Schematic of three matertals with particular fiber orientations and a crack normal to and
ending at the interface.

from the r-axis in the y-z plane by the angles 0,. 8, and 8 for materials L. Il and III,
respectively. This example is provided to show the ease with which the method can be used
for complicated material arrangements. For the specific case of 8, = — 8, and 8, = 0°, for
which a schematic representation is shown in Fig. 11, all the eigenvalues of eqn (20) that
lead to singular stress states are shown in Table 7 and Fig. 12, These results are obtained
within approximately 0.5% accuracy based on the observed convergence trends using a 20-
element model. As ¢, goes to 0, the well-known modes I, IT and III of a crack in a
homogeneous orthotropic material are recovered and the three 4 values converge to 0.5.
Note that the value 7. is fairly constant over the entire range studied, whereas 4, and 4,
vary significantly over the same range. The lowest value of #,, corresponding to the strongest
singularity. occurs for (), approximately equal to 33 . As 0, goes to 90, the three-dimensional
deformations of the structure decouple into one-dimensional and two-dimensional defor-
mations as the v -y plane (see Fig. 11) becomes a plane of material symmetry. The eigenvalue
/> corresponds to antiplane shear deformation. whereas the other two eigenvalues cor-
respond to inplane deformation.

Figure 13 depicts the case of a three-material junction having materials and geometry
as defined in the previous example. except that no crack is present in the current example.
The eigenvalues that fead to simeular stress states in this case are shown in Table 7 and in
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Table 7. Values of all 2 between O and | tor the cases depicted in Figs 12 and 13, for the special case §, = 07,

0, = -0,
With disbond between materials I and 111 Without disbond between
(sec Fig 12) materials I and 11 (see Fig. 13)
0, = —10, ’ s e Al ‘2
0 0.49%675 0.300000 0.500426 0.99918] 1.000007
10 0.483380 0.505698 0.509267 0.979417 0.985042
20 0.453722 0.507514 0.536132 0.942521 0.969417
30 0.420610 0.508612 0.567943 0.913433 0.968623
40 0.3937%0 0.509514 0.600854 0.908084 0.975970
45 0.384903 0.509910 0.614499 0.915760 0.980782
50 0.379941 0.510264 0.626341 0.929369 0.985588
60 0.384139 0.510826 0.644185 0.965095 0.993672
70 0.411175 0511178 0.654337 0.991563 0.998373
80 0.461925 0.511326 0.658101 0.999363 0.999852
90 0.500000 0.511338 0.658587 0.999999 1.000681
0.70
0.65 r
A3
0.60 r
0.55 ¢
A 0.50
0.45
0.40
0.35
0.30 ; ——
0 10 20 30 40 50 60 70 8 90
Angle 0,=-03
Fig. 12. Values of all 2.5 which lead to singular stress states tor the case of Fig. 11 with 8, = —8,
and 0, =0 .
1.00
A2
095t
.90 +
0.9 A
085 ¢
A 080}
0.75
0.70 +
0.65
0.60 . . o A .
0 10 20 30 40 50 60 70 8 9N
Angle 6,=-03
Fig. 13. Values of all 2~ which lead 1o siagular stress states for the case of Fig. 11 with 6, = —8,

e O bt aith no dishond.
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8] =—83=45°, and 62=0°

"

A%

w

A1=0.915760
-10 . . . . — .
-180 -135 90 45 O 45 90 135 180
Angle ©

IFig. 14 Three-dimensonal displacement ficlds for the case of Fig. 11 with ¢, = —¢, =45 and

i 0 and with no disbond.

Fig. 13, These results ure also obtained within approximately 0.5% accuracy using a 20-
element model. As (/) goes 1o O or 90 | the value of the only two /Zs which lead to singular
stress states converge towards unity since the singular point disappears for these two cases.
The variation of »~, and ~. over the range studied is not as large as for the previous case.
The lowest value of 2, occurs for ¢, approximately equal to 37°. Note also that the values
of + for this case are much higher than in the previous case, which shows that the presence
of a crack leads to more singular stress states. However. even in the absence of a crack,
stress fields with signiticant singularities exist in the three-material junction. The three-
dimensional displacement field corresponding 1o 7, and the eigenvector U from egn (20)
for the case of Fig. 12 with ), = —; =45 and 6, =0 is shown in Fig. 14. The three-
dimensional stress ficlds for this problem could easily be obtained following the procedures
indicated in previous papers (Pageuu e¢r af.. 19934.b) for two-dimensional fields.

Validation of the generdalized plane strain assumption

The approach used by Pageau and Biggers (1995¢) enables one to obtain the stress
and displacement ficlds at the location where singular stress states occur due to general three-
dimensional geometrical discontinuities. In that paper. prismatic multi-material junctions
having a locus of singular points that intersects a free surface. or free edge, were considered.
There. the finite element model encompasses at most a half-spherical space. Results for the
examples considered in the current investigation can be obtained from the general three-
dimension lormulation at internal singular points it the finite element model encompasses
a full spherical space. When results are obtained using the general three-dimensional
formulation. no assun.ption ol generalized plane strain condition is made. However, for all
cases investigated here. the general three-dimensional formulation gives essentially the same
results as the current formulation as long as the values of /2 are between 0 and 1. For example,
the case shown in Fig. 13 where 0. = - ), = 45 has two singular roots, 7, = 0.913992 and
22 = 0978030, according to the general three-dimensional formulation using a model with
128 elements. Both roots are within 0.3% of those obtained with the current formulation
and a simple 20-clement model. For the corresponding disbonded case shown in Fig. 12
(le. 0, = — . = 45 ) the general three-dimensional formulation with a 128-element model
leads to three singular roots. 2, = 0.381968. 7. = 0.510572 and /, = 0.614608. These values
agree with those obtamed with a 20-¢lement model and the current formulation to within
0.8%. Furthermore. it appears that the results [rom the 20-element model using the current
formulation are superior to those of the larger general three-dimensional model based on
the observed convergence trends of the two methods. This comparison validates the con-
clusion of Ting and Hoang (1984) regarding the effect of assuming generalized plane strain
conditions. By assuming generalized plane strain, the current formulation allows one to
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simplify the finite element model and to reduce greatly the computational cxpensc in
obtaining the asymptotic stress and displacement fields at internal points in structurcs
where the discontinuous geometry is prismatic two-dimensional and the displacement fields
are three-dimensional.

CONCLUSIONS

A finite element formulation has been developed for determining the order of the
singularity and the angular variation of the displacement and stress fields around a singular
point in structures which are prismatic two-dimensional but with three-dimensional dis-
placement fields due to the presence of anisotropic materials. This formulation has the
merit of using a simplifying generalized plane strain assumption which has been shown to
have no influence on the results compared with a more complicated general three-dimen-
sional formulation. The sectorial element displacement shape functions are quadratic in
the angular direction and asymptotic in the radial direction. Numerical integration is
required only in the angular direction resulting in a very computationally efficient formu-
lation. The rapid convergence of the formulation has been demonstrated by comparison
with several available exact solutions. Low-order quadrature yields very accurate results
when a reasonable number of elements is used. Monotonic convergence is observed with
mesh refinement in isotropic materials and oscillatory convergence is observed with aniso-
tropic materials. Discrete changes in mechanical properties between adjacent elements cause
no difficulty in convergence. Predictions for the order of singularity in multi-material wedges
and junctions have been shown to be accurate with very simple models. The angular
variation of the singular displacement field corresponding to each root / is also obtaied
through solution to the eigenvalue problem. Although all examples presented in this paper
had only real roots, the method predicts complex eigenvalues and eigenvectors with equal
ease. The accuracy and efficiency shown here suggest that results from this approach could
be used to formulate two-dimensional and three-dimensional enriched elements for use in
obtaining generalized stress intensity factors in complex geometrical configurations includ-
Ing anisotropic materials.
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